South East Asian J. Math. & Math. Sc. Vol.6 No.1(2007), pp.79–84

HARMONIC MORPHISMS ON ALMOST GF-r CONTACT METRIC STRUCTURE MANIFOLDS

Meera Mishra

c/o Prof. Ram Nivas Department of Mathematics and Astronomy Lucknow University, Lucknow-226007, India

(Received: January 14, 2006)

Abstract: In this paper we have studied almost morphisms on an almost contact metric structure manifolds in almost GF-r contact metric manifolds. Some other interesting result on cartesian product manifold $M \times R^r$ have also been established where M is an almost GF-r contact metric manifold of dimension (2m + r).

Keywords and Phrases: Almost r-contact structure, GF-structure, harmonic morphisms, cartesian product manifold

2000 AMS Subject Classification: 53D15, 53B35

1. Preliminaries

Let (M,g) and (N,h) be two C^{∞} manifolds and $F:M\to N$ be a C^{∞} map. Let ∇ and $\overline{\nabla}$ be Levi-Civita connections on M and N respectively. The second fundamental form α_F of F given by

$$\alpha_F(X,Y) = \bar{\nabla}_x dF(Y) - dF(\nabla_x Y) \tag{1.1}$$

for all X, Y tangents to M. Here $\overline{\nabla}$ is the connection induced by F on the bundle $F^{-1}(TN)$, TN denotes the tangents bundle of N.

The tension field $\tau(F)$ of F is defined as trace of second fundamental form α_F , i.e.,

$$\tau(F) = \sum_{i=1}^{m} \alpha_F(e_i, e_i)_p \tag{1.2}$$

where $\{e_1, e_2, \dots, e_m\}$ is an orthonormal basis for the tangent space $T_p(M)$ of M at $p \in M$. We say that a map $F: (M, g) \to (N, h)$ between two manifolds M and N is harmonic if and only if $\tau(F) = 0$ [2,3,6].

A map $F:(M,g)\to (N,h)$ is called harmonic morphism if it maps germs of the harmonic function to germs of the harmonic function, i.e, $\Delta f=0$ implies that $\Delta(f\circ F)=0$ for all functions f defined on an open set $V\subset N$ [1,4].